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Abstract—The throughput of B+ tree query processing is
critical to many databases, file systems, and cloud applications.
Based on bulk synchronous parallel (BSP), latch-free B+ tree
query processing has shown promise by processing queries in
small batches and avoiding the use of locks. As the number of
cores on CPUs increases, it becomes possible to process larger
batches in parallel without adding any extra delays. In this work,
we argue that as the batch size increases, there will be more
optimization opportunities exposed beyond parallelism, especially
when the query distributions are highly skewed. These include
the opportunities of avoiding the evaluations of a large ratio of
redundant or unnecessary queries.

To rigorously exploit the new opportunities, this work intro-
duces a query sequence analysis and transformation framework —
QTrans. QTrans can systematically reason about the redundancies
at a deep level and automatically remove them from the query
sequence. QTrans has interesting resemblances with the classic
data-flow analysis and transformation that have been widely used
in compilers. To confirm its benefits, this work integrates QTrans
into an existing BSP-based B+ tree query processing system,
PALM tree, to automatically eliminate redundant and unneces-
sary queries '. Evaluation shows that, by transforming the query
sequence, QTrans can substantially improve the throughput of
query processing on both real-world and synthesized datasets,
up to 16X.

Keywords—B+ tree, many-core processors, latch-free process-
ing, query analysis and transformation

[. INTRODUCTION

As a fundamental indexing data structure, B+ tree is widely
used in many applications, ranging from database systems and
parallel file systems to online analytical processing and data
mining [1], [2], [3], [4], [5]. There have been significant efforts
on optimizing the performance of B+ tree, with a large portion
of work aiming to improve the concurrency [6], [7], [8], [9],
[10], [11]. As the memory capacity of modern servers has
increased dramatically, in-memory data processing becomes
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Fig. 1: New Optimization Opportunities

more popular. Without expensive disk I/O operations, the cost
of accessing in-memory B+ trees becomes more critical.

To reduce the tree accessing cost, prior work has proposed
latch-free B+ tree query processing [7]. Traditionally, B+ tree
query processing requires locks (i.e., latches) to ensure the
correctness since queries may access the same tree node and if
one of them modifies it (e.g., an insertion query), it would cause
conflicts. Latch-free B+ tree query processing avoids the use
of locks by adopting a bulk synchronous parallel (BSP) model.
Basically, it processes the queries batch by batch, with each
batch handled by a group of threads in parallel. By coordinating
the threads working on the same batch, the use of locks can
be totally avoided (see Section 2). To guarantee the quality of
service (QoS), the size of a query batch should be carefully
bounded to avoid long delays.

Fortunately, as modern processors become increasingly
parallel, the size bound of a batch can be dramatically relaxed
without incurring extra delays. For example, the latest Intel
Xeon Phi processors equipped with 64 cores can process 1M
queries with time cost at only milliseconds (ms) level. In this
work, we argue that as the batch size grows, there will be
more optimization opportunities exposed beyond parallelism,
which are further compounded by the fact that many real-world
queries follow highly skewed distributions. The high level idea
is abstractly illustrated by Figure 1.

For example, queries to the locations where taxi drivers
stop are highly biased in both the time dimension (e.g., rush
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hours) and the space dimension (e.g., popular restaurants).
As the query batch becomes larger, there will be growing
possibilities of redundant queries (e.g., a repeated search of
the same location) or unnecessary queries (e.g., a later query
“cancel out” the effect of an earlier query).

To identify these ‘“useless” queries, this work proposes
a query sequence analysis and transformation framework —
QTrans, to systematically reason about the relations among
queries and exploit optimization opportunities.

QTrans has interesting resemblances with the classic data-
flow analysis and transformation, but it targets query-level
analyses and transformations. Intuitively, QTrans treats a
query sequence as a “high-level” program, where each query
resembles a statement in a regular program. By tracking the
queries that “define” values, QTrans is able to link search
queries to their corresponding defining queries. Based on the
analysis, QTrans marks all the useful queries in the sequence
and sweeps the useless ones, reducing the amount of queries
to evaluate. Comparing to a traditional data-flow analysis [12],
[13] that iterates over cyclic control flows, QTrans only needs
to perform acyclic analysis for query sequences with the most
basic types of queries—although the algorithm of redundancy
elimination is similar regardless of this difference.

To evaluate its effectiveness, we integrate QTrans into an
existing BSP-based B+ tree processing system, called PALM
tree [7]. The integration is at two levels: QTrans for each
individual batch (i.e., intra-batch integration), and QTrans
across batches (i.e., inter-batch integration). To minimize the
runtime overhead, we also implement the parallel version of
QTrans and discuss the potential load imbalance issues.

Finally, our evaluation using real-world and synthesized
datasets confirms the efficiency and effectiveness of QTrans,
yielding up to 16X throughput improvement on Intel Xeon Phi
processors, with scalability up to all the 64 cores.

In sum, this work makes a four-fold contribution.

« First, this work identifies a class of optimizations for B+
tree query processing, enabled by the increased hardware
parallelism and the skewed query distributions.

o It proposes QTrans, a rigorous solution to optimizing query
sequences, inspired by the conventional data-flow analysis
and transformation.

o It integrates QTrans into an existing BSP-based B+ tree
processing system and the evaluation shows significant
throughput improvement.

o The idea of leveraging traditional code optimizations at the
query level, in general, could open new opportunities for
optimizing query processing systems.

In the following, we will first provide the background on
B+ tree and the latch-free query processing (Section 2), then
discuss the motivation of this work (Section 3). After that, we
will present QTrans (Section 4), the integration of QTrans into
PALM tree (Section 5), and the evaluation results (Section 6).
Finally, we discuss the related work (Section 7) and conclude
this work (Section 8).
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Fig. 2: A 3-order B+ tree, where key-value pairs are stored
only in leaf nodes (i.e., last level).

II. BACKGROUND

This section introduces B+ tree, its basic types of queries,
and the high-level idea of latch-free query evaluation.

A. B+ Tree and Its Queries

A B+ tree is an N-ary index tree. It consists of internal nodes
and leaf nodes. In contrast to B trees, B+ trees only maintain
the keys and their associated values in their leaf nodes, and
their internal nodes are merely used to hold the comparison
keys and pointers for tree traversals. The maximum number
of children nodes for internal nodes is specified by the order
of B+ tree, denoted as b. The actual number of children for
internal nodes should be at least [2], but no more than b.
Figure 2 shows an example of a 3-order B+ tree. Each internal
node contains comparison keys and pointers to the children
nodes. The leaf nodes together hold all the key-value pairs. For
the 3-order B+ tree, each internal node has at least 2 children
nodes, but no more than 3.

The structure of B+ tree dynamically evolves as queries to
the tree are evaluated. In general, there are three basic types
of B+ tree queries: (i) insertion; (ii) search; and (iii) deletion.

Given a B+ tree 7, suppose function FIND(key;, T) can
find the leaf node of key; if it exists or return null otherwise,
then the semantics of queries can be described as follows.

o I(key;,v;): if FIND(key;, T) # null, then update its value
to v;; otherwise, insert a new entry of (key;,v;) into 7.

o S(key;): if FIND(key;, T) # null, return the value of key;;
otherwise, return null.

o D(key;): if FIND(key;, T) # null, then remove the entry
(keys,v;) from the B+ tree.

Among the three, only S(key;) returns results; I(key;, v;)
and D(key;) only update/modify the B+ tree. It is important
to note that, when multiple queries arrive in a sequence, the
order in which the queries are evaluated may affect both the
returned results and the tree structure. In other words, there
exist dependences among the queries in general.

B. Latch-Free Query Evaluation

When there are multiple threads operating on the same B+
tree, it becomes challenging to evaluate the queries efficiently.
First, the workload for each thread is too little to benefit from
thread-level parallelism [7]; Second, since different queries
may access the same node, threads have to lock the nodes (or
even subtrees) that they operate, which essentially serializes
the computations, wasting hardware parallelism.
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Fig. 3: Latch-Free Query Evaluation

A promising solution to the above issues is latch-free query
evaluation [7]. Basically, it adopts the bulk synchronous parallel
(BSP) model and processes queries batch by batch. Threads
are coordinated to process the queries in a batch in parallel
without any use of locks. Specifically, each query batch is
processed in three stages 2, as illustrated in Figure 3:

Stage-1 Partition queries to threads evenly; threads then run
in parallel to find the corresponding leaf nodes based on
the keys in the queries;

Stage-2 Shuffle queries based on the leaf nodes such that
each thread only handle queries to the same leaf node.
Evaluate queries in parallel, including returning answers
to search queries and updating corresponding tuples in
the leaf nodes for insert and delete queries;

Stage-3 Modify tree nodes bottom up:

o Update tree nodes in parallel and collect requests for

updating the parent nodes (i.e., the upper level);

o Shuffle modification requests to the parent nodes such
that each thread only modifies the same node;
Repeat update-shuffle, until the root node is reached
and updated as needed.

The shuffling in stages-2 and 3 ensures contention-free
operations for each thread, guaranteeing the correctness. Com-
paring with lock-based schemes, this latch-free scheme can
significantly boost the throughput of query evaluation for B+
tree, by up to an order of magnitude [7].

[1I. MOTIVATION

On top of the promises of latch-free query evaluation, we
find new opportunities to further improve the efficiency of B+
tree processing, enabled by modern many-core processors and
the highly skewed query distributions.

A. Growing Hardware Parallelism

As the frequency has reached a plateau, modern processors
embrace growing parallelism to sustain the performance
gain. For example, the latest Xeon Phi processor, Knights
Landing [14], owns 64 cores/256 hyper threads. The massive

2For better illustration, we merged stages 3 and 4 in [7].
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hardware parallelism enables high processing capacity by
allowing a larger pool of threads to run in parallel.

In the context of latch-free B+ tree query processing, the
availability of more hardware threads allows the use of larger
batch sizes while preserving the processing delay. However,
this work argues that the benefits of using larger batches are
not limited to the parallelism — as the batches become larger,
there would be new opportunities exposed, especially when
the queries are unevenly distributed.

B. Highly Skewed Query Distribution

In fact, the query distributions of real-world applications
are often highly skewed. Take the taxi data of New York City
(NYC) as an example. The geolocations where taxi drivers pick
up (or drop off) passengers follow a highly skewed distribution,
as shown in Figure 4-(a).

The x-axis shows the geolocations and the y-axis indicates
the visiting frequencies of each geolocation for a period of
one month. The top 1000 geolocations out of 4,194,304 (i.e.,
0.02%) covers 68.272% of total visits. In this case, the skewed
distribution is caused by the fact that some geolocations are
much more likely to be visited by taxis, such as shopping malls
or popular restaurants.

In fact, skewed distributions frequently appear in other
query processing scenarios, such as BigTable [15], Azure [16],
Memcached [17], and among others. Figures 4-(b) and (c) show
the key distributions in cloud workloads modeled by Yahoo
Cloud Serving Benchmark (YCSB). In these cases, the top 1%
keys cover 30% and 56% requests, respectively.

C. Optimization Opportunities

When the distribution becomes highly skewed, queries with
identical key tend to appear more frequently. This trend not
only results in repetitive queries (i.e., query redundancies), but
also queries that might not have to be evaluated.

Next, we use an example query sequence, as shown in
Figure 5, to illustrate the optimization opportunities, and
informally characterize them into three categories.

o Query Redundancy 0 One obvious opportunity is for the
repeated search queries like queries 2 and 4 in Figure 5.
Since query 3 does not modify key;, query 4 should return
the same value as query 2. Thus, we only need to evaluate
one of them, then forward the return value to the other.

o Query Overwriting @. When two queries operate on the
same key and both of them are either insert or delete with
no search queries on the same key in between, then the
second query may “overwrite” the first query. In another
word, the first query becomes unnecessary, such as the
overwritten queries 3 and 5 in Figure 5.

o Query Inference 9 For a search query, by tracing back
prior queries in the query sequence, one may find an earlier
query carrying the information that the search query needs,
thus we may infer its return value without evaluating it,
such as query pairs (1, 2), (6, 9), and (7, 8).

In addition, as existing opportunities are exploited, more
opportunities might be uncovered. For example, an earlier
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Fig. 5: Optimization Opportunities

removal of a search query may enable a new opportunity of
query overwriting. As we will show in the evaluation, the above
optimization opportunities frequently appear when dealing with
both real-world and synthesized datasets.

IV. ANALYSIS AND TRANSFORMATION

In this section, we present a rigorous way to systematically
exploit the new opportunities mentioned above, inspired by the
classic data-flow analyses and transformations.

A. Overview

Basically, we treat the query sequence as a “program”, where
each “statement” is a B+ tree query. Then the optimization of
query sequence follows the typical procedure of a traditional
compiler optimization: it first performs an analysis over the
query sequence, based on which, it then transforms the query
sequence into an optimized version — a new query sequence
that is expected to be evaluated more efficiently. We refer to
this new optimization scheme as query sequence analysis and
transformation or QSAT, in short.

Define-use .
S » » QUD Chains
a analysis ' '

Fig. 6: Conceptual Workflow of QSAT

Figure 6 illustrated the workflow of QSAT. The original
query sequence Q.S is first analyzed to uncover use-define
relationships among queries. The output — an intermediate data
structure, called QUD chains is then used to guide the query
sequence transformation, which yields an optimized query
sequence S’. Next, we present the ideas of QSAT.
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B. Query Sequence Analysis

The goal of query sequence analysis is to uncover the
basic define-use relations among the queries, which will be
used to facilitate the later transformation. This resembles the
classic reaching-definition analysis used in compilers [12], [13].
Basically, it examines the queries in the sequence and finds
out which queries “define” the “states” of B+ tree and which
queries “use” the “states” correspondingly.

Based on the semantics defined in Section 2.1, the queries
that define the state are insert and delete queries, and the
queries that use the state are search queries. The define-use
analysis matches each search query with its corresponding
defining query (either an insert or a delete) based on the keys
that the queries carry.

Example. Figure 7-(a) shows the define-use analysis on the
running example, where g; corresponds to the query at line <.
Basically, the set e consists of the defining queries that can
reach each query. For example, the defining queries ¢;, g¢ and
q5 can reach query g7.

QUD Chain. To represent the results of define-use analysis, we
construct a data structure — query-level use-define chain (QUD
chain). This data structure resembles the UD chain constructed
internally by some compilers.

The construction of QUD chains is as follows. Basically,
when a use query is met, the construction adds a link from the
use query to its corresponding defining query (i.e., the defining
query with the same key) if the later exists in current defining
query set e. An example of constructed QUD chains is shown
in Figures 7-(b).

QUD chains capture the dependence relations among the
queries in a query sequence. For the query semantics defined in
Section 2.1, the size of a QUD chain is limited to two queries.
However, in general, the length of a QUD chain can go beyond
two. QUD chains provide critical information for performing
query sequence transformation, as shown next.

C. Query Sequence Transformation

The purpose of query sequence transformation is to generate
an optimized version of query sequence. For clarity, we next
describe the transformation with two passes. However, they
can be integrated into one pass, as we will show later.

Round-1: Useless Query Elimination. This round is to

eliminate queries that do not contribute to the final results
of query processing — the returned values of search queries and
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Fig. 7: Example of Query Sequence Analysis and Transformation (QSAT)

Algorithm 1 Useless Query Elimination (Mark-Sweep)

Algorithm 2 One-Pass QSAT (for queries of the same key)

1 I={} > a list of useful queries
2: QUD() > QUD(q) returns the defining query of query q
3: for ¢; in {q1 --- ¢n} do

4 if g; is a search query then

5 I.add(q;) > mark a search query as “useful”

6: if QUD(q;) # 0 then

7 l.add( QUD(q;) ) > mark defining query “useful”
8: return /

the key-value pairs stored in the B+ tree. This can be achieved
with a mark-sweep strategy that has been previously used for
garbage collection and dead code elimination.

Algorithm 1 describes the useless query elimination. It first
marks all the search queries as useful queries, as they need
to return values. Then it traces back the QUD chains to find
the corresponding defining queries, and mark them as useful
queries as well. Note that the algorithm is customized to QUD
chains of length 2, but it can be easily extended to handle
QUD chains with arbitrary length.

Example. Figure 7-(c) lists the results after useless query
elimination. The number of queries drops from 9 to 7. This
round explores query overwriting (see Section 3.3).

Round-2: Query Inference & Reordering. Besides query
overwriting, there are two other optimization opportunities:
redundant queries and query inference (see Section 3.3). The
second round is to explore the latter two.

Basically, for each search query, find its corresponding
defining query (if exists), then retrieve the return value and
return it. After this optimization, all the search queries with
corresponding defining queries (i.e., QUD(¢;) # () will be
eliminated, as Figure 7-(d) shown (denoted as ret wv;).

Note that, after the optimization, no return operations ret
v; depend on any other queries, hence they can be reordered
— being moved to the top of the sequence. In this way, the
latency of the search queries could be reduced.

An orthogonal optimization is a top-K cache. When the B+
tree is large, performance can be benefited from putting hot
key-value pairs (top K pairs) into a small cache. Thus, when
an insert query with a top-K key-value pair is left after round
1, we can transform the query into a cache write operation
(e.g., We (key;, v;) in Figure 7-(d)).

Finally, after the two rounds of optimizations, there are only
2 queries left that need to be actually evaluated.

D o = null
:ns =0
L I=1{}
: for ¢; in {¢n -+ q1} do

1 > the last defining query
2
3
4
5. if ¢; is a search query then
6
7
8

> number of search queries
> a list of useful queries & operations

ns + +
else if ¢; is an insert or delete query then
if ns > 0 then

9: 1.add(INFER_AND_RETURN(g;, 1))
10: ns =0

11: if go = null then

12: Go = qi

13: if ns > 0 then

14: > no defining query for the last ns queries
15: 1.add(SEARCH_AND_RETURN(qp,, s))

16: if go = null then

17:  I.add(go,)

18: return /

D. Discussion

Comparison with Classic Data-flow Analysis. Despite the
similarities between our define-use analysis and the traditional
reaching-definition analysis, there are a couple of critical dif-
ferences. First, the two analyses work at different granularities.
The traditional data-flow analysis performs at the instruction
level, while ours is applied at the query level. Each query itself
may be implemented by a series of low-level instructions.
Second, the traditional data-flow analysis operates on the
control-flow graph, which may consist of cycles and take
several iterations to converge. By contrast, our analysis works
on a sequence of queries which imposes no “backward” control
flows.

Potential Extension. Note that the ideas of query sequence
analysis and transformation are not limited to the basic query
semantics. It may benefit other batch-based query processing
systems that may involve more complicated query structures as
well. Consider a more advance query I(keys, S(keyz2)). The
query is to insert/update key; with the value drawn from keys.
In this case, the length of a QUD goes beyond 2.

E. Implementation

We implemented the above analysis and transformation into
a framework, called QTrans. For better efficiency, we combine
the analysis and transformation into a single pass.
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Pre-Sorting. In existing latch-free B+ tree processing [7], the
query sequence can be pre-sorted by keys for improved tree
search efficiency during stage-1 (see Section 2.2). In this work,
we assume this optimization is enabled and leverage the pre-
sorting to design an efficient one-pass QSAT.

One-Pass QSAT. Algorithm 2 illustrates the basic idea of one-
pass QSAT for a sequence of queries of the same key (after
pre-sorted), denoted as {q1 --- gy} Basically, it traverses
the query sequence backwards from g, to q;. If the current
query ¢; is a search (use) query, it increments the search query
counter ng; If ¢; is an insert or delete (defining) query, it
first checks the search query counter ng, and if ng > 0, it
adds a INFER_AND_RETURN(g;, ng) into the output list 7,
which extracts the value carried by ¢; and emits ng returns of
that value. After that, the algorithm resets n,. In addition, the
algorithm also finds the latest defining query ¢, (overwriting all
previous defining queries) and adds it to the output list. Note
that, a defining query for the last a few search queries may
not appear in the sequence (recognized by ns > 0). In these
cases, the algorithm adds a SEARCH_AND_RETURN(qy,, )
into the output list, which first evaluates ¢,, by searching its
value in the tree, then emits n returns of that value. Although
one-pass QSAT is designed for acyclic sequences of queries,
the processing is similar regardless whether the use-define
relations are cyclic or not.

It is not difficult to validate that the one-pass QSAT described
above generates the same query and operation sequence as the
QSAT introduced in Sections 4.2 and 4.3, but can be performed
more efficiently.

Alternative Solution. Note that one-pass QSAT is based on
query semantics; it does not evaluate any query (i.e., calling a
query processing routine). An alternative solution is simulating
the query evaluations, performed on a different data structure
(instead of the actual B+ tree). The simulation can also
eliminate redundant and unnecessary queries. However, in
this case, all the queries still need to be evaluated with the
“simulated” query processing routines. In comparison, QSAT
does not rely on any implementations of query processing
routines. Also, they are able to skip irrelevant queries as needed
(e.g., when line 8 in Algorithm 2 fails).

V. INTEGRATION

To evaluate the proposed analysis and transformation, we
integrate QTrans into an existing latch-free B+ tree query
processing system — PALM tree [7] (see Section 2.2). To
maximize the benefits, this section also describes a parallel
implementation of QTrans and optimizations across batches.

A. Parallel Intra-Batch Integration

The QTrans described in Section 4 applies optimizations
sequentially over the sequence of queries. However, in the
actual setting of latch-free B+ tree query processing, queries
in a batch are processed in parallel for maximum performance
on parallel processors. To match with the intra-batch parallel
query processing scheme, we next present a parallel design of
QTrans.
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Fig. 8: Latch-Free Query Evaluation w/ QTrans

Given a batch of queries, the parallel QTrans creates a
pool of threads based on the number of available cores N
(part of latch-free query evaluation), then performs the query
optimizations in two phases:

o Phase-I: First, partition the query batch evenly into N mini-
batches. Then performs sequential QSAT over different
mini-batches in parallel.

o Phase-II: Shuffle the queries generated by Phase-I based
on the keys. Then let each thread perform a sequential
QSAT over queries of the same key.

Figure 8 shows the new latch-free query evaluation with the
two phases integrated. After Phase-II, there will be at most one
(defining) query left for each key. After applying the parallel
QOTrans, the following steps would be the same as the original
latch-free query evaluation (see Figure 3).

Advantages. Comparing with the original latch-free query
evaluation (Figure 3), the new design (Figure 8) shows several
advantages:

o Faster sorting. In the original design, query sorting is at
the batch level. While in the new design, query sorting is
only performed at the mini-batch level 3.

e Reduced leaf searches. The original design searches for
leaf nodes for every query in the batch; In comparison, the
new design only searches for leaf nodes for each distinct
key in the batch.

e Reduced shuffle overhead. Both the original and the new
designs require to shuffle the queries in Stage 2 and Phase-
II. However, in the new design, the shuffle overhead is
lower, due to the query reduction in Phase-I.

Load Balancing. Despite the above advantages, intra-batch
optimization may suffer from workload imbalance at Phase II.
After Phase I, the number of remaining queries of different
keys might be different. Further, after the query shuffling of
Phase II, the number of keys mapped to different leaf nodes
might also varies due to the skewed key distribution. Both
cases can cause load imbalance among worker threads. Note
that the second case also occurs in the original design of query
processing. Here, we address them with a lightweight workload
balancing strategy.

3For generality, query sorting is not shown in Figures 3 and 8.
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Basically, our load balancing method leverages the prefix
sum algorithm to calculate the starting query index for each
thread, so that the number of queries assigned to each thread
could be similar, but not necessarily the same. Because the
assignment should not assign queries with different keys to
different threads, which violates the correctness of BSP.

B. Inter-Batch Optimization

Beside intra-batch optimizations, this work also explores
optimization opportunities across batches. However, it is
challenging to implement inter-batch QSAT, because the inter-
mediate results of query analysis will grow as more batches are
analyzed. For example, a search query’s corresponding defining
query may appear in a much earlier batch. Keeping tracking
all the information will overburden the QSAT, outweighing the
benefits.

Instead, we adopt a more scalable strategy that is similar
to the alternative solution mentioned in Section 4.4. Basically,
it “simulates” the query evaluation at the inter-batch level on
a different data structure. In this way, we only need to carry
the “state” of key-value pairs from one batch to the next. The
key is that the simulation must be faster than the actual query
evaluation to bring in potential benefits. We achieve this with
a top-K cache.

Top-K Cache. This is a small software cache with fixed number
of entries — K entries. This design minimizes the costs of
read/write operations. The cache can be implemented with a
hash table, where the key-value pairs perfectly match with the
B+ tree key-value pairs. As the number of entries is fixed,
the hash function can be designed in an efficient way so that
hashing conflicts can be minimized or even avoided. The entries
in the top-K cache can be pre-populated with training data
and periodically updated with testing data using various cache
replacement policies (e.g., LRU).

To integrate the inter-batch optimization in the query
evaluation system, we place the top-K cache operations in
Stage 1 right after Phase II (see Figure 8). At this moment,
the redundant and useless queries within the batch have been
eliminated, hence the cache operations will be reduced to a
minimum — only proportional to the number of distinct keys
in the batch.

VI. EVALUATION

This section evaluates the efficiency and effectiveness of
QTrans for optimizing the latch-free B+ query processing.

A. Methodology

We use an open-source implementation of latch-free B+
query processing system * as the baseline, which follows
the design of PALM tree querying system [7]. It supports
SIMD operations for key search within a tree node. QTrans
is implemented in C++ language with the use of Pthread for
multicore programming and is then integrated into PALM tree,
serving as the optimized querying system.

“https://github.com/runshenzhu/palmtree

Platform. We evaluate B+ tree query processing on the latest
version of Xeon Phi, Knights Landing. Our Xeon Phi is a 64-
core 7210 processor, used as a CPU, running at 1.3 GHz with
IM L2 cache shared between two cores, supporting 512-bit
AVX512 instructions.

Datasets. To evaluate our query sequence optimization, we
build B+ trees based on the unique keys from four synthetic
datasets (with configurations the same as those in [7]) and
two realistic datasets:

« gaussian: the keys of queries follow the classic Gaussian
distribution with parameters = N % 0.5, § = p * 0.5%,
where IV is the range of queries;

« self-similar: the keys follow 80-20 rule, which means 80%
queries cover 20% range of queries [18];

« Zipf: the keys follow Zipfian [18] with 6§ = 1.0;

« uniform: the keys are uniformly distributed;

« ycsb: Yahoo! Cloud Service Benchmark (YCSB) [19] that
is used to evaluate the performance of cloud systems.
It includes Zipfian (ycsb-zipf) and latest (ycsb-latest);
Note that zipf and ycsb-zipf are different in terms of the
parameter settings.

o taxi: NYC taxi data published by New York City Taxi &
Limousine Commission, containing the yellow and green
trips in New York City at different time”.

All key distributions except uniform are skewed. The size
of our input queries, the configuration of trees, and the input
query distributions are summarized in Table 1.

TABLE I: DATASET CONFIGURATIONS

Dataset | #queries | #uniq-key | parameters
Gaussian 100M S50M nw=N=x%0.50=px*x05%
Self-similar 100M 50M 80-20 rule
Zipfian 100M 50M 0=1
Uniform 100M 50M /
YCSB-latest 30M 10M /
YCSB-zipfian 30M 10M 0 =0.99
Taxi 13.9M 4.1M /

B. Performance and Scalability

Synthesized Data. Figure 9 compares the original B+ tree
processing with the one optimized with QTrans on four syn-
thetic datasets (i.e., gaussian, self-similar, zipf and uniform)
in terms of throughputs. For each distribution, the update ratio
(i.e., the ratio of insert and deletion queries) changes from
0% to 75%. For all distributions, the one with QTrans (i.e.,
opt) shows better throughput, with up to 4.05X improvement
(occurs on zipf dataset).

Specifically, for all datasets, the throughput improvement is
higher when the update ratio is lower. Even for the uniform
dataset, the throughput improvement reaches 2.37X. This
is because QTrans handles all FIND queries in stage 1,
thus avoiding the time consuming stage 2 in the original
design. When the update ratio is greater than 0%, for the
skewed datasets, such as gaussain, zipf, and self-similar, the

Shitp://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

102



[ | original O opt

100 T T T 50 T T T
= 90 45
: % 3
i 2
£ 2 20
2 30 15
= 20 10
=00 8
0
U-0.0 U-0.25 U-0.5 U-0.75 U-00 U-025 U-0.5 U-0.75 U-00 U-025 U-0.5 U-0.75 U-00 U-025 U-0.5 U-0.75
a gaussian b self-similar c zipf d uniform
Fig. 9: Overall throughput improvement. x-axis: update ratios; y-axis: throughput of queries.
1 04 Ws WMis[032Me4
1 T T T T 50 50
= % 35 i3
5 40 40
s 35 35
e 30 30
2 25 25
5 20 20
z 15 15
£ 9 E
Il
0 0

U-0.0 U-0.25 U-0.5 U-0.75
a gaussian

U-0.0 U-0.25 U-0.5 U-0.75
b self-similar

U-0.0 U-0.25 U-0.5 U-0.75
c zipf

U-0.0 U-0.25 U-0.5 U-0.75
d uniform

Fig. 10: Throughput scalability. x-axis: update ratios; y-axis: throughput of queries.

[ | original O opt [ | original 0 opt

90
2 80
S 70
= 60
E 50
& 40
£ %
= 10
0
U-0.0 U-0.25 U-0.5 U-0.75 U-0.0 U-025 U-05 U-0.75
a ycsb-latest throughput b ycsb-zipf throughput
Fig. 11: YCSB overall throughput and scalability. x-
- [J1 E4 Ws Mic[J32Me4
[ | original O opt

250 ‘ : : 250 ; ‘ ‘ :
S 200 200

b

g 150 150

£ 100 100

=

£ 50 50

=

U-0.0U-0.25U0-0.5U-0.75
b taxi scalability

U-0.0 U-0.25 U-0.5 U-0.75
a taxi throughput

Fig. 12: Taxi throughput and scalability.

throughput improvement is more significant, from 1.76.X to
3.59X. This is because they have higher chances to include
queries with identical keys. Interestingly, even for uniform,
QTrans shows slightly improvement (but much less than other
skewed cases) when there are updates, owing to the query
transformations.

More specifically, QTrans monitors the query types. If
no defining queries are found, it will evenly partition the
input queries and get rid of the time-consuming workload
redistribution. In contrast, such redistribution is always required
by the original implementation. Similarly, if the update ratio
is low, it only redistributes the update-related queries, leading
to better performance.

Realistic Data. Next, we confirm the results with real-world
datasets ycsb-latest and ycsb-zipf (Figure 11 (a) and (b)), and
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Fig. 13: self-similar (U-0.25) leaf operations

NYC Taxi dataset taxi (Figure 12 (a)). Among the three datasets,
QTrans optimized version achieves higher improvements on
ycsb-latest with a nearly 6.71X improvement (U-0), and taxi
with a nearly 16.60X improvement (U-0.75). In comparison,
on ycsb-zipf, the QTrans optimized version only achieves
2.31X improvement. Note that the throughput improvements
are different between ycsb-zipf and zipf, due to the parameter
setting differences. The former is based on the real-world cloud
system characterization; while the latter is chosen from prior
work for a direct comparison [7].

Scalability. Figures 10, 11 (c)-(d), and 12 (b) report how
the throughput of QTrans optimized version changes with the
number of threads increasing from 1 to 64. Most cases show
strong scalability up to 64 threads. Only taxi scales up to 32
threads. This is because taxi has fewer unique keys than other
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datasets, thus our optimization results in more query reduction.
The remaining queries are too few to feed 64 threads. This is
proved by its lowest latency in Table II.

C. Performance Breakdown

To better understand the performance improvements, we
perform a case study on the self-similar dataset.

Figure 14 compares the intra-batch and inter-batch optimized
versions with the original version on throughput, query reduc-
tion ratio, and execution time of different stages, with the
update ratio ranging from 0% to 75%.

Intra-batch Optimization Benefits. Comparing the original
with the one enabled intra-batch optimization (Figure 14a),
there is a clear throughput improvement.

The improvement is due to two main reasons. First, intra-
batch optimization reduces the number of queries to process,
which is reflected by the query reduction ratio, as shown in
Figure 14b. However, as mentioned earlier, the query reduction
may cause the workload imbalance in the later stage for leaf
node searching, which can in turn compromises the reduction
benefits to a certain degree. To alleviate this, QTrans performs
a lightweight load balancing with parallel prefix sum (see
Section 5.1). This is the second contributor to the throughput
improvement.

In addition, we perform a study on the distribution of
workload (counts of operations) on the leaf nodes when all
64 threads are employed, as shown in Figure 13. The counts
are for a whole query sequence. The results demonstrate the
efficiency of load balance optimization. However, even with
our optimization, it is impossible to achieve a perfect load
balance. Because there exists data dependencies among update
queries that perform on the same tree node, these modifications
will always be processed by the same thread. Since the input
query is skewed, the number of queries handled by different
threads is also skewed.

Inter-batch Optimization Benefits. The last bar in each
sub-figure of Figure 14 shows the throughput gain, the task

reduction ratio, and the execution time when the inter-batch
optimization is applied. In general, the improvement varies
because, in some cases, the optimization opportunities have
already been explored by the earlier intra-batch optimization,
especially for relatively larger batch sizes.

Batch Size Impact. We set batch_size as 0.5M, 3M, and
6M with update ratios of 25% for self-similar distribution,
and test the throughput differences under different kinds of
optimizations. As shown in Figure 15, the throughput increases
as the growing of the batch size, specifically, the benefit from
intra-batch redundancy elimination.

Considering the batch size (in Table II) and the absolute
throughput after our optimizations together, we observe a strong
correlation — a larger batch size leads to a better absolute
throughput. In the offline processing case without the latency
requirement, we can always select a large batch size to achieve
a better throughput. Our work considers a more challenging
online processing, and these batch sizes are chosen for a more
acceptable latency requirement.

TABLE II: LATENCY FOR EACH DATASET

Batch- Opt Lat(ms) Org Lat(ms)
Dataset | o T00 ] U075 [ 000 | U073
Gaussian | 5242880 | 52.26 | 133.62 | 122.18 | 492.09
Self-similar | 3145728 | 65.12 | 404.88 | 200.49 | 818.54
Zipfian | 3145728 | 62.31 | 253.84 | 300.37 | 1011.5
Uniform | 2097152 | 36.50 | 391.37 | 105.89 | 475.99
YCSB-latest | 1500000 | 18.23 | 112.75 | 133.16 | 519.74
YCSB-zipfian | 1500000 | 14.95 99.96 39.02 182.90
Taxi | 2081427 | 14.66 17.65 49.12 161.38

D. Latency

Table II reports the latencies for two scenarios: search-
only and 75% update, with the corresponding batch size. For
comparison, we also report the original PALM tree’s latency
with identical batch sizes. Even for the largest batch case,
we still maintain our search-only latency lower than 50ms
and our update latency lower than 400ms. For the three real-
world cases, our search-only latencies range from 14.66ms to
18.23ms, and update latencies range from 17.65ms to 112.75ms.
This is smaller than 0.5-1s latency maintained in previous
buffering method [20]. In addition, we can always trade our
high throughput for faster response time by using a smaller
batch size, if it is desired.
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VII. RELATED WORK

This section focuses on research related to B+ tree processing,
bulk synchronous parallel model, as well as the redundancy
elimination in traditional compilers.

B+ Trees and Its Optimizations. As a basic data structure, B+
tree has received significant attentions, especially on improving
the concurrency by reducing tree contention.

Prior work can be roughly categorized into three groups.
The first group is for improving the lock performance and
designing lock-free trees, in asynchronous processing. For
instance, Rodeh designed optimized lock-based B+ trees [6],
and later, Braginsky and Petrank proposed a lock-free B+ tree to
further improve the performance for high contention cases [9].
More recently, new lock-free tree structures are proposed to
address the performance challenges brought by contentions,
such as [8], [10], [11]. The second group is about leveraging
Bulk Synchronous Parallel (BSP) model. PALM tree proposed
by Sewall et al. [7] is a representative solution. The third
group exploits hardware support like Hardware Transactional
Memory (HTM), including the red-black tree implemented by
Dice et al. [21] and the Eunomia proposed by Wang et al. [22].
Based on these techniques, it is also effective to apply lazy
tree restructuring [23], [24] to further reduce the contention.

The above methods focus either on improving the locking
or lock-free policy or on changing the tree structure. By
contrast, this work focuses on exploiting the skewed query
distribution, the semantic relations among queries, and the high
concurrency provided by modern many-core processors, so it
is complementary to all of these existing approaches.

In addition, there are techniques to map B+ trees or other
similar index trees on many-core processors or other new
architectures. For instance, Fix et al. [25] implemented B+ tree
on GPU, while Daga et al. [26]’s implementation is for APU.
Kim et al. [27] designed and implemented a fast architecture-
sensitive search tree on both CPUs with SIMD units and GPUs.
A more recent design of B+ tree for heterogeneous platform is
given by Shahvarani and Jacobsen [28]. There are also many
efforts on improving the cache performance for in-memory
trees, such as Cache-sensitive search (CSS) trees [29] and
cache-sensitive B+ trees (CSB+-trees) [30].

Bulk Synchronous Parallel (BSP): The BSP model [31] used
in latch-free B+ tree query processing has also been commonly
used for many other applications. For example, Pregel [32] and
Giraph [33], a well-known graph processing model is based on
BSP. Many other graph processing engines or libraries are also
directly built based on BSP, such as GraphX [34] on distributed
cluster and Gunrock [35] on GPU. Moreover, BSP model also
serves as a design foundation for many successful programming
models in big-data and high-performance computing fields,
such as MapReduce [36], Spark [37], and Apache Hama [38].

Redundancy Elimination The key idea of this work is to
eliminate redundant and unnecessary queries by transforming
the query sequence. At high level, it shares the objectives
with some traditional compiler optimizations, such as partial

redundancy elimination (PRE) and memoization, which are
also designed to eliminate unnecessary code in the programs.

Consider the control-flow graph (CFG) of a function in a
program. If a computational statement is evaluated again along
a certain path, without any of its operands changed in between,
the later evaluation would be (partially) redundant and thus
will be removed by PRE. Over the past 30 years, many PRE
algorithms [39], [40], [41], [42] have been designed to optimize
program performance. Another traditional compiler optimiza-
tion for redundancy elimination is memorization [43], [44],
[45], [46], which is heavily used for functional programming
languages. The basic idea is to cache the results of frequent
yet expensive function calls and returning the corresponding
cached result when calls with the same inputs appear again.

The above techniques for code optimizations inspire the
design of our query sequence analysis and transformation. In
addition, redundancy elimination has also been used to improve
the space utilization in storage systems [47], [48], [49] and
the integration of relational database schema [50].

Finally, there are some compiler optimization techniques
being used to optimize SQL queries [51], [52], [53], where
the SQL queries are first transformed into imperative programs,
then optimized by conventional compiler techniques. By
contrast, our techniques in this paper directly transform the
query sequences without any query-to-code transformations.

VIII. CONCLUSION

This work targets the critical throughput problem of B+
tree query processing. It, for the first time, points out the
new optimization opportunities raised by the growing hard-
ware parallelism and the highly skewed query distributions
in real-world B+ tree applications. More specifically, this
work identifies three categories of optimization opportunities
in the B+ tree query evaluation. To systematically exploit
these opportunities, it introduces a novel query sequence
analysis and transformation (QSAT) framework, inspired by
the conventional code optimizations in compilers. For practical
use, this work designs a one-pass QSAT, namely QTrans, and
integrates it into a latch-free B+ tree query processing system,
with parallelization and load balancing supports. Finally, our
evaluation confirms the efficiency and effectiveness of QTrans
on both synthetic and real-world datasets with up to 16X
throughput improvement.

ARTIFACT APPENDIX
A. Abstract

This artifact contains the source code of optimized PALM
tree integrated with Qtrans proposed in our paper. There are
in total 4 synthetic datasets (gaussian, self-similar, zipfian
and uniform) and 2 realistic datasets (YCSB and Taxi) as
mentioned in our paper. The 4 synthetic datasets are generated
online and the 2 realistic datasets are included in this artifact.
In addition, this artifact also includes the bash scripts to install
3rd-party libraries, to compile the source code, and to generate
the results.
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As our SIMD implementation requires AVX-512 support,
the artifact needs to run on Intel Xeon Phi processor (Knights
Landing) with Intel C++ compiler (icc) and Pthreads support.
Libraries junction, boost, glog, jemalloc are needed in order
to successfully compile and run the source code in this artifact.
Moreover, all source code is tested in the environment of Linux
CentOS 7.

B. Artifact Check-List (Meta-Information)

o Compilation: Intel C++ compiler icc.

e Binary: The source code of optimized PALM tree
integrated with Qtrans and the scripts are included to
generate binaries.

o Data set: There are 4 synthetic datasets and 2 realistic
datasets. The four synthetic datasets are gaussian, self-
similar, zipfian and uniform. The 2 realistic datasets are
YCSB and Taxi. The 4 synthetic datasets are generated
online and the 2 realistic datasets are included in this
artifact.

o Run-time environment: The artifact has been developed
and tested on on Linux (CentOS 7) environment. The
source code is compiled by Intel C++ compiler icc with
Pthreads support. As to extracting the output, Python 2.7
is needed.

o Hardware: The artifact is supposed to run on Intel Xeon
Phi Processor (Knights Landing/KNL).

o Execution: Bash scripts are included for execution.

o Output: Results include throughput, count of the queries,
queries percentage, break down time and latency.

o How much time is needed to complete experiments?:
It approximately takes about 25 hours.

o Publicly available?: Yes.

C. Description

1) How Delivered

The source code is available as a public repository on Zenodo
(https://zenodo.org/record/1486393) with DOI: 10.5281/zen-
0do.1486393.

2) Hardware Dependencies

The artifact has been developed and tested on the KNL
machine.

3) Software Dependencies

In order to use Intel C++ compiler, the following script needs
to be included in the ~/.bashrc file and reload the .bashrc
file with the following command.

» Boost (https://www.boost.org/);
« Boost Sort Parallel (https://github.com/fjtapia/sort_
parallel);

o Glog (https://github.com/google/glog);

o Jemalloc (https://github.com/jemalloc/jemalloc);

o Stx-btree (https://github.com/bingmann/stx-btree).

The bash script to install the above libraries is already
included.

4) Data Sets

The 4 synthetic data sets are generated at runtime. The 2
realistic data sets are included in this artifact. The root directory
of our repository is cgo19, the realistic data sets are included
in the directory cgo19/dataset.

D. Installation

The bash script cgo19/run.sh is used for installing the 3rd-
party libraries as mentioned in section A and generating the
binaries palmtree_test and palmtree_test_detail. To run the
script, type the following commands:

$ chmod +x run.sh
S ./run.sh

The script takes about 15 mins to finish. After that, the
generated binaries palmtree_test and palmtree_test detail
can be found in directory cgo19/.

E. Experiment Workflow

With palmtree_test and palmtree_test_detail, please nav-
igate to directory cgo19/figure_data to generate the raw
data used in the evaluation section of our paper, through the
following commands:

$ chmod +x get_figure_data.sh
$ ./get_figure_data.sh

$source /opt/intel/
— compilers_and_libraries/linux/bin
< /compilervars.sh intel64

$source ~/.bashrc

The specific path might need to be modified according to
the installation path of the icc compiler.

In order to compile and run the source code in this artifact,
the following libraries are needed:

« Junction (https://github.com/preshing/junction);

The raw data generation takes about 24 hours.

F. Evaluation and Expected Result

After running the bash script to generate results, the results
of each figure will be saved in a corresponding subfolder.
Generally, the name of a subfolder corresponds to a figure in
our paper. For example, the result of figure9a in the paper
is saved in subfolder figure9a. More specifically, under each
subfolder, the result is saved in file format_data.txt.

There are two special cases: figurel4 and
figure4. For figure14, figureld4a’s data is saved in
format_data_figuret14a.txt, figure14b’s data is saved in
format_data_figure14b.txt and figure14c’s data is saved in
format_data_figure14c.txt in directory figure14. For figure4,
the corresponding script is executed with output messages
redirected to the file Message.txt. The generated data is stored
in the file with suffix .data, e.g., the results shown in figure4
come from the corresponding file Sort*_Distribution.data,
and Message.ixt contains some details of figure4.
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G. Experiment Customization

Optionally, for each subfolder in the directory
cgo19/figure_data/, running the python script format_data.py
can also generate the data for the corresponding figures. But
take a notice, there are dependencies between the results.
Figure10a depends on figure9a, figure10b depends on
figure9b, figure10c depends on figure9c, figure10d depends
on figure9d, figure11c depends on figure1ia, figure1id
depends on figure11b, figure12b depends on figure12a, and
figure13 depends on figure9a, figure9b, figure9c, figure9d,
figure11a, figure11b and figure12a. The dependencies
among the results limit the order of generating the results. For
example, figure10a depends on figure9a, which means one
must finish generating data for figure9a before generating
data for figure10a.
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